GCE BIOLOGY - BY1

Mark Scheme - January 2013

Question			Marking details	Marks Available
1.	(a)	(i)	Stage A – telophase; Stage C – metaphase;	2
		(ii)	Centromeres split/ divide; <u>Chromatids/ chromosomes</u> are being <u>pulled</u> to (opposite) poles; (due to) contraction/ shortening of the spindle (fibres);	2
	(b)	(i)	Interphase;	1
		(ii)	The (quantity of) DNA has <u>doubled</u> / (quantity of) DNA changes from 6 to 12; NOT increase	1
		(iii)	Meiosis; (correct spelling) (At the end of the cell cycle) the (quantity) of DNA has been <u>halved</u> (and halved again) / can describe with numbers /involves 2 (consecutive) divisions; Ignore reference to chromosomes	2
			Question 1 total	[8]

Question Marking details

Marks Available

Max 3

2.	(a)
----	-----

DNA	RNA
Double stranded	Single stranded
helical	Not helical
Deoxyribose/ $C_5H_{10}O_4$ / one	Ribose/ $C_5H_{10}O_5$ / one more
less oxygen atom in pentose	oxygen atom in pentose
NOT deoxyribonucleic acid	NOT ribonucleic acid
Contains thymine	Contains uracil
Not letters	Not letters
Can list all bases present	Can list all bases present
Only one type	3 types (mRNA, tRNA &
	rRNA)
(Relatively) long/ larger	(relatively) short/ smaller
molecule	molecule

(b)

23% guanine therefore 23% cytosine;(54% made up of adenine and thymine)Adenine = 27(%);Correct answer = 2 marks

Question 2 total

2

[5]

Question			Marking details	
3.	(a)	(i)	Phagocytosis <u>/ endocytosis;</u> the (cell) <u>membrane</u> {invaginates/infolds/ surrounds/ wraps around/ engulfs} (to form a vesicle (allow vacuole))around the {food particle/ algae};	2
		(ii)	Golgi { <u>Body/apparatus</u> };	1
		(iii)	Exocytosis;	1
	(b)	(i)	(Site of aerobic) respiration / production of ATP; NOT production of energy alone	1
		(ii)	Carry out {endo/exo/ phago}cytosis / synthesis of digestive enzymes/ movement/ form lysosomes; Reject active transport unqualified NOT digestion/ feeding	1
	(c)		 No nucleus/nuclear membrane/ DNA free in cytoplasm; No membrane bound organelles / named example/ possess mesosome; A loop of DNA / circular DNA/ ORA DNA {linear/ on chromosome/ associated with histone}; Small<u>er</u>/70S ribosomes; Cell wall; Reject reference to cellulose Capsule/ flagellum/ plasmid; NOT reference to size (can be neutral) 	Max 3
			Question 3 Total	[9]

Question			Marking details	Marks Available
4.	(a)		Quaternary/ 4°;	1
	(b)	(i)	(Labelled) arrow in correct position;	1
		(ii)	COOH/ carboxyl/ carboxylic acid;	1
		(iii)	Disulphide {bond/ bridges} / ionic bonds / hydrogen / hydrophobic interactions / Van der Waals; (Any 2) NOT peptide / S-S (covalent – neutral)	1

(C) Mark points must be comparative

Max 2

phospholipid	triglyceride
2 fatty acids	3 fatty acids;
phosphate (head)	do not contain a phosphate (head)
polar/hydrophilic head and non-polar/hydrophobic tails	non-polar/hydrophobic;

		Question 4 Total	[10]
		Ref to phospholipid bilayer alone- insufficient	
		layer} in the membrane;	
		The phospholipids are {arranged in/ formed} a {bilayer/ double	
	(ii)	6.1(m ²);	2
		NOT react/ dissolve with water	
		{repelled by/ above/ avoid} water;	
		{Tails/ fatty acids} are {hydrophobic/ non polar} and are	
		to/ in} the water;	
(d)	(i)	{Heads/ phosphates} are {hydrophilic/ polar} and are {attracted	2

Question 4 Total

Questio	n	Marking details	
5. (a)	(i)	<i>Oxygen</i> by (simple) diffusion; through the phospholipid (bilayer);	2
	(ii)	Phosphate ions by {facilitated diffusion/active transport}; through {carrier /channel}proteins/ protein pumps (active transport); (not channel proteins with active transport) NOT intrinsic Pass through hydrophilic pore; (not with active transport)	Max 2
<i>(b)</i>	(i)	Active transport; (Between 0-30au) the concentration of phosphate ions is lower outside (the root)/higher inside (the root)/ lons are being taken up against a concentration gradient; With oxygen present (aerobic) respiration can occur; Providing {ATP/ energy} (for active transport)/ active transport needs {energy/ ATP};	1 Max 2
	(ii)	There are a {limited/fixed} number of {carriers/ proteins/ channels} (for phosphate ions) in the membrane; (The curve levels off/the rate of uptake becomes constant) when all of the {carriers/ channels/ proteins} are in use;	2
	(iii)	(lons are being taken up by) <u>facilitated</u> diffusion; Uptake {only begins/ occurs} when the external concentration is high <u>er</u> than the concentration inside the root hair cells/ <u>down</u> a concentration gradient;	2
(<i>c</i>)		They are a {component of/required to synthesise} {DNA/ RNA/ ATP/ NAD/ FAD/ NADP/ nucleotides/ nucleic acids};	1
		Question 5 Total	[12]

Question			Marking details	Marks Available
6.	(a)	(i)	Molecule of water (drawn with arrow towards the O atom of the glycosidic bond); NOT water going out Monosaccharides drawn with –OH groups in correct position on C1 and C4 (involved in bond);	2
		(ii)	Hydrolysis; NOT hydrolysation (ignore reference to acid)	1
		(iii)	Glycosidic;	1
		(iv)	Glucose and galactose; ignore alpha/ beta	1
	(b)	(i)	An <u>enzyme</u> that has been fixed to an <u>inert</u> {matrix/support/ substance};	1
		(ii)	The enzyme can easily be recovered/ reused;	Max 2
			The product is free from contamination;	
			Enzyme is {stable at / tolerates/ withstand} higher temperatures/denatures at a higher temperature/ functions	
			over a wide range of pH;	
			NOT wider range of temperature alone	
			Several enzymes with differing optima can be used at the	
			same time;	
			More control over the reaction/enzymes easily added or	
			removed/ can be used in a continuous process;	

Question		Marking details	Marks Available
(c)	(i)	Heat with Benedict's solution/reagent;	2
		NOT warm/ water bath/ ref to acid	
		Blue to{red/ orange/ green/ yellow/ brown};	
	(ii)	Instrument/equipment that can detect a specific	1
		molecule/metabolite (in a mixture of molecules/bodily fluid).	
	(iii)	Any one from:	1
		The biosensor would give quantitative data/	
		it would detect {a particular product/glucose/galactose}/	
		Can detect even at {very low concentrations/ small volumes};	
(d)		1. (The concentration of reducing sugars) would decrease;	Max 4
		2. {Lactose/ substrate} <u>concentration is</u> lower (in the sour	
		milk);	
		3. Lactic acid lowers the pH;	
		Enzyme would be inactivated/denatured;	
		 Hydrogen/ ionic bonds (maintaining the 3D shape) would break; 	
		6. This will change the shape/charge of the active site (of	
		lactase);	
		7. Fewer enzyme-substrate complexes would be	
		formed/fewer successful collisions;	
		8. Benedicts would remain {blue/ change to {orange/	
		yellow/ green/ brown}/ negative}	
		Question 6 Total	[16]

Question		Marking details	Marks Available
7 . (a)		Describe and explain the effect of inhibitors on enzyme action.	[10]
(A	Enzymes are globular proteins/ <u>biological</u> catalysts;	
mes	В	Active site (of the enzyme) has a specific 3D/ tertiary shape;	
enzymes	С	lower activation energy of a reaction;	
	D	Inhibitors reduce the rate of (an enzyme catalysed) reaction;	
	E	Competitive inhibitors;	
	F	Have a shape similar to the substrate/complementary to the active site; NOT same shape	
competitive	G	Fit/ bind into the active site;	
comp	н	Prevent the substrate molecule entering the active site/block the active site;	
	I	Max. rate of reaction can be achieved at higher substrate concentrations/ Increasing the concentration of the substrate reduces the effect of the inhibitor; allow correctly labelled graph	
(Ĺ	Non-competitive inhibitors;	
	ĸ	Bind to the allosteric site/site other than the active site;	
Ð	L	Causes a change in the shape of the <u>active site;</u>	
etitiv	М	Substrate can no longer fit into the active site/ active site is no	
duc		longer complementary;	
non-competitive	Ν	Fewer/ no enzyme-substrate complexes form/ fewer successful collisions;	
	0	Max. rate of reaction cannot be achieved/increasing the	
		concentration of the substrate has no effect on inhibition; allow	
(correctly labelled graph	

Question Marking details

Marks Available

- (b) Describe the effects of placing animal and plant cells in solutions of differing solute concentration.
 - A Osmosis is the (net) movement of water molecules down a water potential gradient/from a higher water potential to a lower water potential;
 - B through a partially/selectively permeable membrane;
 - C Hypotonic solutions have a high<u>er</u> water potential than the (cytoplasm of the) cells;
 - D Water moves into the cells (by osmosis);
 - E Animal cells swell /burst/ref osmotic lysis; reject turgid
 - F Plant cells the <u>cytoplasm</u> swells up/cell contents/plasma membrane pushes against the cell wall;
 - G (plant cells) becomes turgid/ ψ_p >0/cell wall prevents osmotic lysis;
 - H Hypertonic solutions have a low<u>er</u> water potential than the (cytoplasm of the) cells;
 - I Water moves out of the cells (by osmosis);
 - J Animal cells shrink/crenated; reject flaccid
 - K In plant cells the <u>cytoplasm</u> shrinks / the (plasma) membrane is pulled away from the cell wall;
 - L Plant cell becomes plasmolysed/ $\psi_p=0$;
 - M Isotonic solutions have the same water potential as the cytoplasm of the cell;
 - N (In isotonic solutions) there is no net movement of water molecules;
 - O At incipient plasmolysis 50% of the cells in a plant tissue will be turgid and 50% will be plasmolysed;