GCE BIOLOGY - BY1

Mark Scheme - January 2013

Question Marking detailsMarksAvailable

1. (a) (i) Stage A - telophase; 2
Stage C - metaphase;
(ii) Centromeres split/ divide; 2
Chromatids/ chromosomes are being pulled to (opposite)poles;(due to) contraction/ shortening of the spindle (fibres);
(b) (i) Interphase; 1
(ii) The (quantity of) DNA has doubled / (quantity of) DNA changes 1 from 6 to 12; NOT increase
(iii)
Meiosis; (correct spelling) 2(At the end of the cell cycle) the (quantity) of DNA has beenhalved (and halved again) / can describe with numbers/involves 2 (consecutive) divisions;Ignore reference to chromosomes
Question 1 total[8]

Question
Marking details
2. (a)

DNA	RNA
Double stranded	Single stranded
helical	Not helical
Deoxyribose/ $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{4} /$ one less oxygen atom in pentose NOT deoxyribonucleic acid	Ribose/ $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{5} /$ one more oxygen atom in pentose NOT ribonucleic acid
Contains thymine Not letters Can list all bases present	Contains uracil Not letters Can list all bases present
Only one type	 rRNA)
(Relatively) long/ larger molecule	(relatively) short/ smaller molecule

(b) 23% guanine therefore 23% cytosine;
(54\% made up of adenine and thymine)
Adenine = 27(\%);
Correct answer $=2$ marks

Question 2 total
Question Marking details
3. (a) (i) Phagocytosis/endocytosis; 2
the (cell) membrane \{invaginates/infolds/ surrounds/ wraps around/ engulfs\} (to form a vesicle (allow vacuole))around the \{food particle/ algae\};
(ii) Golgi \{Body/apparatus\};
(iii) Exocytosis;
(b) (i) (Site of aerobic) respiration / production of ATP;
NOT production of energy alone
(ii) Carry out \{endo/exo/ phago\}cytosis / synthesis of digestive 1 enzymes/ movement/ form lysosomes;

Reject active transport unqualified
NOT digestion/ feeding
(c) 1.No nucleus/nuclear membrane/ DNA free in cytoplasm; Max 3
2. No membrane bound organelles / named example/ possess mesosome;
3. A loop of DNA / circular DNA/ ORA DNA \{linear/ on chromosome/ associated with histone\};
4. Smaller/70S ribosomes;
5. Cell wall; Reject reference to cellulose
6. Capsule/ flagellum/ plasmid;
NOT reference to size (can be neutral)

Question 3 Total

Question Marking details
4. (a) Quaternary/ 4°; 1
(b) (i) (Labelled) arrow in correct position; 1
(ii) $\mathrm{COOH} /$ carboxyl/ carboxylic acid; 1
(iii) Disulphide \{bond/ bridges\} / ionic bonds / hydrogen / 1hydrophobic interactions / Van der Waals; (Any 2)NOT peptide / S-S (covalent - neutral)
(c) Mark points must be comparative

phospholipid	triglyceride
2 fatty acids	3 fatty acids;
phosphate (head)	do not contain a phosphate (head)
polar/hydrophilic head and non-polar/hydrophobic tails	non-polar/hydrophobic;

(d) (i) \{Heads/ phosphates\} are \{hydrophilic/ polar\} and are \{attracted to/ in\} the water;
\{Tails/ fatty acids\} are \{hydrophobic/ non polar\} and are
\{repelled by/ above/ avoid\} water;
NOT react/ dissolve with water
(ii) $6.1\left(\mathrm{~m}^{2}\right)$;
The phospholipids are \{arranged in/ formed\} a \{bilayer/ double layer\} in the membrane;
Ref to phospholipid bilayer alone- insufficient

Question 4 Total

Question Marking details
Marks
Available
5. (a) (i) Oxygen 2
by (simple) diffusion; through the phospholipid (bilayer);
(ii) Phosphate ions Max 2
by \{facilitated diffusion/active transport\};
through \{carrier /channel\}proteins/ protein pumps (active
transport); (not channel proteins with active transport)
NOT intrinsic
Pass through hydrophilic pore; (not with active transport)
(b) (i) Active transport; 1
(Between 0-30au) the concentration of phosphate ions is lower Max 2outside (the root)/higher inside (the root)/ lons are being takenup against a concentration gradient;With oxygen present (aerobic) respiration can occur;Providing \{ATP/ energy\} (for active transport)/ active transportneeds \{energy/ ATP\};
(ii) There are a \{limited/fixed\} number of \{carriers/ proteins/ 2 channels\} (for phosphate ions) in the membrane; (The curve levels off/the rate of uptake becomes constant) when all of the \{carriers/ channels/ proteins\} are in use;
(iii) (Ions are being taken up by) facilitated diffusion; 2
Uptake \{only begins/ occurs\} when the external concentration is higher than the concentration inside the root hair cells/ down a concentration gradient;
(c) They are a \{component of/required to synthesise\} \{DNA/ RNA/1ATP/ NAD/ FAD/ NADP/ nucleotides/ nucleic acids\};
Question 5 Total[12]
Question Marking details
Marks Available
6. (a) (i) Molecule of water (drawn with arrow towards the O atom of the glycosidic bond); NOT water going out Monosaccharides drawn with -OH groups in correct position on C1 and C4 (involved in bond);
(ii) Hydrolysis; NOT hydrolysation (ignore reference to acid)
(iii) Glycosidic;
(iv) Glucose and galactose; ignore alpha/ beta
(b) (i) An enzyme that has been fixed to an inert \{matrix/support/ substance\};
(ii) The enzyme can easily be recovered/ reused;
The product is free from contamination;
Enzyme is \{stable at / tolerates/ withstand\} higher temperatures/denatures at a higher temperature/ functions over a wide range of pH ;
NOT wider range of temperature alone
Several enzymes with differing optima can be used at the same time;
More control over the reaction/enzymes easily added or removed/ can be used in a continuous process;

Question Marking details

(c) (i) Heat with Benedict's solution/reagent;

NOT warm/ water bath/ ref to acid
Blue to\{red/ orange/ green/ yellow/ brown\};
$\begin{array}{lll}\text { (ii) } & \begin{array}{l}\text { Instrument/equipment that can detect a specific } \\ \text { molecule/metabolite (in a mixture of molecules/bodily fluid). }\end{array} & 1\end{array}$
(iii) Any one from:

The biosensor would give quantitative data/
it would detect \{a particular product/glucose/galactose\}/
Can detect even at \{very low concentrations/ small volumes\};
(d)

1. (The concentration of reducing sugars) would decrease;

Max 4
2. \{Lactose/ substrate\} concentration is lower (in the sour milk);
3. Lactic acid lowers the pH ;
4. Enzyme would be inactivated/denatured;
5. Hydrogen/ ionic bonds (maintaining the 3D shape) would break;
6. This will change the shape/charge of the active site (of lactase);
7. Fewer enzyme-substrate complexes would be formed/fewer successful collisions;
8. Benedicts would remain \{blue/ change to \{orange/ yellow/ green/ brown\}/ negative\}

Question 6 Total

Marks
7. (a) Describe and explain the effect of inhibitors on enzyme action.

	E	Competitive inhibitors;
	F	Have a shape similar to the substrate/complementary to the active site; NOT same shape
	G	Fit/ bind into the active site;
	H	Prevent the substrate molecule entering the active site/block the active site;
	1	Max. rate of reaction can be achieved at higher substrate concentrations/ Increasing the concentration of the substrate reduces the effect of the inhibitor; allow correctly labelled graph

$\begin{cases}\mathrm{J} & \text { Non-competitive inhibitors; } \\ \mathrm{K} & \text { Bind to the allosteric site/site other than the active site; } \\ \mathrm{L} & \begin{array}{l}\text { Causes a change in the shape of the active site; } \\ \mathrm{M} \\ \text { Substrate can no longer fit into the active site/ active site is no }\end{array} \\ \mathrm{N} & \begin{array}{l}\text { longer complementary; } \\ \text { Fewer/ no enzyme-substrate complexes form/ fewer successful } \\ \text { collisions; }\end{array} \\ \mathrm{O} & \begin{array}{l}\text { Max. rate of reaction cannot be achieved/increasing the } \\ \text { concentration of the substrate has no effect on inhibition; allow } \\ \text { correctly labelled graph }\end{array}\end{cases}$
(b) Describe the effects of placing animal and plant cells in solutions of differing solute concentration.
A Osmosis is the (net) movement of water molecules down a water potential gradient/from a higher water potential to a lower water potential;

B through a partially/selectively permeable membrane;
C Hypotonic solutions have a higher water potential than the (cytoplasm of the) cells;

D Water moves into the cells (by osmosis);
E Animal cells swell /burst/ref osmotic lysis; reject turgid
F Plant cells the cytoplasm swells up/cell contents/plasma membrane pushes against the cell wall;

G (plant cells) becomes turgid $/ \psi_{\rho}>0 /$ cell wall prevents osmotic lysis;
H Hypertonic solutions have a lower water potential than the (cytoplasm of the) cells;

I Water moves out of the cells (by osmosis);
J Animal cells shrink/crenated; reject flaccid
K In plant cells the cytoplasm shrinks / the (plasma) membrane is pulled away from the cell wall;

L Plant cell becomes plasmolysed/ $\Psi_{\mathrm{p}}=0$;

M Isotonic solutions have the same water potential as the cytoplasm of the cell;

N (In isotonic solutions) there is no net movement of water molecules;

O At incipient plasmolysis 50% of the cells in a plant tissue will be turgid and 50% will be plasmolysed;

